Metastability in the Hamiltonian mean field model and Kuramoto model
نویسندگان
چکیده
منابع مشابه
Metastability in the Hamiltonian Mean Field model and Kuramoto model
We briefly discuss the state of the art on the anomalous dynamics of the Hamiltonian Mean Field model. We stress the important role of the initial conditions for understanding the microscopic nature of the intriguing metastable quasi stationary states observed in the model and the connections to Tsallis statistics and glassy dynamics. We also present new results on the existence of metastable s...
متن کاملChaos and Statistical Mechanics in the Hamiltonian Mean Field model
We study the dynamical and statistical behavior of the Hamiltonian Mean Field (HMF) model in order to investigate the relation between microscopic chaos and phase transitions. HMF is a simple toy model of N fully-coupled rotators which shows a second order phase transition. The canonical thermodynamical solution is briefly recalled and its predictions are tested numerically at finite N . The Vl...
متن کاملGlassy phase in the Hamiltonian mean-field model.
We study the relaxation dynamics of a Hamiltonian system of N fully coupled XY spins. The thermodynamics of the system predicts a ferromagnetic and a paramagnetic phase. Starting from out-of-equilibrium initial conditions, the dynamics at constant energy drives the system into quasistationary states (QSSs) characterized by dynamical frustration. We introduce the spin polarization as an order pa...
متن کاملOnset of synchronization in the disordered Hamiltonian mean-field model.
We study the Hamiltonian mean field (HMF) model of coupled Hamiltonian rotors with a heterogeneous distribution of moments of inertia and coupling strengths. We show that when the parameters of the rotors are heterogeneous, finite-size fluctuations can greatly modify the coupling strength at which the incoherent state loses stability by inducing correlations between the momenta and parameters o...
متن کاملCore-halo distribution in the Hamiltonian mean-field model.
We study a paradigmatic system with long-range interactions: the Hamiltonian mean-field (HMF) model. It is shown that in the thermodynamic limit this model does not relax to the usual equilibrium Maxwell-Boltzmann distribution. Instead, the final stationary state has a peculiar core-halo structure. In the thermodynamic limit, HMF is neither ergodic nor mixing. Nevertheless, we find that using d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physica A: Statistical Mechanics and its Applications
سال: 2006
ISSN: 0378-4371
DOI: 10.1016/j.physa.2006.01.039